If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32u^2-50=0
a = 32; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·32·(-50)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80}{2*32}=\frac{-80}{64} =-1+1/4 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80}{2*32}=\frac{80}{64} =1+1/4 $
| (x+1)/x=12 | | 11+8x=5x+6+3 | | 12x-8x-8=-52 | | 9(x−9)=63 | | 2-5x=3(2-x | | 1/5x=(1/4-x)-4*(1/2x-2) | | d^2=2d+120 | | 7x-12=5x+14 | | 3(x-1)-2(x+3=0 | | x-11=2x-22 | | x+(x-x(.4))=32.4 | | 2x^2-13x=14x-36 | | -3x^2+52x-169=0 | | 3/5=n-2/10 | | 2.5+22=4x+10 | | (2-z)(3z-5)=0 | | -72x^2+104x-20=0 | | -3x+52=4x-4 | | 5s=6 | | 8(x+1)=3x+48 | | -3x+52+4x-4=180 | | 9x+23=6x+17 | | (9+u)(2u-3)=0 | | 4x+6.25=15x+80 | | (x+1)^2=4 | | 4x-6.25=15x+80 | | n/40-20=-1 | | x÷3=15 | | 2x+13=13+x | | 9y-(5y-8)=-10-2y | | 2x+(x/2)=161 | | 6x+5+4x+11=48+9x-6x+3 |